Hình học 8 chương 1 - Tứ giác - Tóm tắt lý thuyết

 


Công thức Toán lớp 8 Chương 1 Hình học

1. Tứ giác

Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tam giác. (Ngược lại là tứ giác lõm)

Định lí: Tổng các góc trong của một tứ giác bằng 360o

Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác. Tổng các góc ngoài của một tứ giác bằng 360o

ABCD, EFGH là các tứ giác lồi - MNQP là tứ giác lõm


2. Hình thang


   Tính chất :

       Nếu ABCD là hình thang:

          - AB // CD
          -Công thức Toán lớp 8 Chương 1 Hình học chi tiết nhất

   Dấu hiệu nhận biết:
       Nếu AB // CD =>  ABCD là hình thang


2b. Hình thang vuông
     ABCD là hình thang, Công thức Toán lớp 8 Chương 1 Hình học chi tiết nhất => ABCD là hình thang vuông

3. Hình thang cân
   Tính chất :

      ABCD là hình thang cân
       - Hai góc kề một đáy bằng nhau.
       - Hai góc đối có tổng bằng 180o
       - Hai cạnh bên bằng nhau AD = BC
       - Hai đường chéo bằng nhau 
AC = BD             

   Dấu hiệu nhận biết

         + Tứ giác ABCD có  => ABCD là hình thang cân

                                         => ABCD là hình thang cân

         + Tứ giác ABCD có  => ABCD là hình thang cân


4a. Đường trung bình của tam giác


   Định nghĩa : 

         => MN là đường trung bình của tam giác ABC

   Tính chất :

         MN là đường trung bình của tam giác ABC =>   AN = NB

                                                                                      AM = MB

                                                                                     

4b. Đường trung bình của hình thang:

         => MN là đường trung bình của hình thang ABCD

- MN là đường trung bình của hình thang ABCD => AM = MD
                                                                                  BN  = NC
                                                                                


5. Đối xứng trục

   A, B đối xứng qua d <=> d là đường trung trực của đoạn AB

- Quy ước: Nếu M thuộc d => điểm đối xứng với M qua d cũng là M


- Hai hình gọi là đối xứng với nhau qua đường thẳng d nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng d và ngược lại. Đường thẳng d gọi là trục đối xứng của hai hình đó

- Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.

- Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H. Ta nói hình H có trục đối xứng

- Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.


6. Hình bình hành


   ABCD là hình bình hành :
        Hai cặp cạnh đối song song AB//CD và AD//BC
        Hai cặp cạnh đối bằng nhau AB=CD và AD=BC
        Hai đường chéo cắt nhau tài trung điểm mỗi đường

+) Dấu hiệu nhận biết:

Tứ giác có các cạnh đối song song là hình bình hành
Tứ giác có các cạnh đối bằng nhau là hình bình hành.

Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

Tứ giác có các góc đối bằng nhau là hình bình hành.
Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.


7. Đối xứng tâm

- Hai điểm A, B gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.
      (Quy ước: Điểm đối xứng với điểm O qua điểm O cũng là điểm O)

- Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với mỗi điểm thuộc hình kia qua điểm O và ngược lại. Điểm O gọi là tâm đối xứng của hai hình đó.

- Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

- Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm O cũng thuộc hình H. Ta nói hình H có tâm đối xứng.

- Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.


8. Hình chữ nhật


- Hình chữ nhật là tứ giác có bốn góc vuông.

- Từ định nghĩa hình chữ nhật, ta suy ra: Hình chữ nhật cũng là một hình bình hành, một hình thang cân.

+) Tính chất:

Hình chữ nhật có tất cả các tính chất của hình hành, của hình thang cân.

Từ tính chất của hình thang cân và hình bình hành: Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

+) Dấu hiệu nhận biết:

Tứ giác có ba góc vuông là hình chữ nhật

Hình thang cân có một góc vuông là hình chữ nhật.

Hình bình hành có một góc vuông là hình chữ nhật

Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

Định lí:




9. Đường thẳng song song với một đường thẳng cho trước

Khoảng cách giữa hai đường thẳng song song: Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm tuỳ ý trên đường thẳng này đến đường thẳng kia.

Tính chất: Các điểm cách đường thẳng b một khoảng bằng h nằm trên hai đường thẳng song song với b và cách b một khoảng bằng h.

Nhận xét: Tập hợp các điểm cách một đường thẳng cố định một khoảng bằng h không đổi là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó một khoảng bằng h.

- Các đường thẳng song song cách đều là các đường thẳng song song với nhau và khoảng cách giữa các đường thẳng bằng nhau.

+) Định lí:

- Nếu các đường thẳng song song cách đều cắt một đường thẳng thì chúng chắn trên đường thẳng đó các đoạn thẳng liên tiếp bằng nhau.

- Nếu các đường thẳng song song cắt một đường thẳng và chúng chắn trên đường thẳng dó các đoạn thẳng liên tiếp bằng nhau thì chúng song song cách đều.

10. Hình thoi



- Hình thoi là tứ giác có bốn cạnh bằng nhau. Hình thoi cũng là một hình bình hành.

- Tính chất: Hình thoi có tất cả các tính chất của hình bình hành


+) Dấu hiệu nhận biết:

Tứ giác có bốn cạnh bằng nhau là hình thoi.

Hình bình hành có hai cạnh kề bằng nhau là hình thoi.

Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.

11. Hình vuông




+ Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau.

+ Từ định nghĩa hình vuông, ta suy ra:

- Hình vuông là hình chữ nhật có bốn cạnh bằng nhau.

- Hình vuông là hình thoi có một góc vuông.

- Như vậy: Hình vuông vừa là hình chữ nhật, vừa là hình thoi.

Tính chất:

- Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi.

- Đường chéo của hình vuông vừa bằng nhau vừa vuông góc với nhau

Dấu hiệu nhận biết:

Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông

Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông

Hình thoi có một góc vuông là hình vuông

Hình thoi có hai đường chéo bằng nhau là hình vuông

BẢNG TỔNG KẾT



















https://vietjack.com/cong-thuc/cong-thuc-toan-lop-8.jsp

Nhận xét