PHẦN 1

Mệnh đề- Tập hợp

Bài 1: Các mệnh đề sau đúng hay sai?

a) 2 là số chẵn

b) 2 là số nguyên tố

c) 2 là số chính phương

Giải:

Mệnh đề đúng là a và b

Mệnh đề sai là c

Bài  2: Tìm xD để P(x) đúng trong các trường hợp sau:

a) P(x): “2x+30

b) P(x): “(2x+3)20

Giải:

a) 2x+30x32D=(;32]

b)

(2x+3)202x+3=0x=32D={32}

Bài 3: Sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ” để phát biểu định lí:

a) Tứ giác ABCD là hình vuông khi và chỉ khi tứ giác đó là hình thoi có một góc vuông.

b) Một số chia hết cho 6 khi và chỉ khi nó chia hết cho 2 và cho 3.

c) Nếu số tự nhiên n chia hết cho 2 thì n2 chia hết cho 4.

Giải:

a) Tứ giác ABCD là hình vuông là điều kiện cần và đủ để ABCD là hình thoi có một góc vuông.

b) Số chia hết cho 6 là điều kiện cần và đủ để số đó chia hết cho 2 và cho 3.

c) n chia hết cho 2 là điều kiện đủ để n2 chia hết cho 4.

n2 chia hết cho 4 là điều kiện cần để n chia hết cho 2.

Bài 4: Chứng minh định lí “ Nếu n là số tự nhiên chẵn thì n2 chia hết cho 4”

Giải:

Vì n chẵn nên n=k(kN). Khi đó n2=4k2 chia hết cho 4 nên n2 chia hết cho 4.

Bài 5: Chứng minh đinh lí “ Với mọi số tự nhiên n nếu 3n+2 là số lẻ thì n là số lẻ”

Giải:

Giả sử n là số chẵn khi đó n=2k(kN)

3n+2=3.2k+2=2(3k+1) chia hết cho 2 nên 3n+2 là số chẵn trái với dữ kiện bài cho. Vậy n lẻ.

Bài 6. Tìm tập hợp các nghiệm thực của phương trình

x(x24)(x+1)(x+3)=0

Giải:

Cách 1: A={3;2;1;0;2}

Cách 2: A={xR|x(x24)(x+1)(x+3)=0}

Bài 7. Tìm tất cả các tập hợp con của tập hợp sau A={0;3;5}

Giải:

Tập con của A là: ;{0};{3};{5};{0;3};{3;5};{0;5};A

Bài 8:  Hai tập hợp A={xR|2x2} và B={xR|x2x6<0} có bằng nhau không?

Giải:

Ta có:B={xR|2<x<3}

Vì 2A mà 2B nên ABAB

Bài 9: Cho hai tập hợp A={xR|x(x2x6)=0} và B={xR|x413x2+36=0}. Tìm AB;AB;AB;BA

Giải:

A={2;0;3};B={3;2;2;3}

AB={2;3};AB={3;2;0;2;3};AB={0};BA={2;3}.

PHẦN 2

Hàm số bậc nhất và bậc hai

Bài 1. Tìm tập xác định của hàm số

a) y=x2x+6                           D=(6;+)

b) y=3x1                                 D=R{1}

c) y=x5+x2+1                D=[5;+)

d) y=x+2x2+4x+3                      D=[2;1)(1;+)

Bài 2: Xét tính chẵn- lẻ hàm số y=|x+2|.

Giải:

TXĐ: D=R

Ta có xDxD và

f(x)=|(x)+2|=|x+2|±|x+2| Hàm số không chẵn không lẻ.

Bài 3. Cho hàm số y=x+2.

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên.

b) Tịnh tiến đồ thị trên sang phải 3 đơn vị rồi xuống dưới 1 đơn vị ta được đồ thị của hàm số nào?

c) Vẽ đồ thị hàm số y=|x+2|.

Giải:

a) a=1 nên hàm số đồng biến trên R. Đồ thị của hàm số là một đường thẳng qua 2 điểm A(0;2),B(2;0).

 

b) Tịnh tiến đồ thị sang phải 3 đơn vị ta được đồ thị của hàm số y=(x3)+2=x1.

Tịnh tiến đồ thị này xuống dưới 1 đơn vị ta được đồ thị của hàm số y=x11=x2.

c)

Ta có y=|x+2|={x+2khix2x2khix<2

Vẽ đồ thị hàm số y={x+2khix2x2khix<2 ta được:

 

Bài 4. Tìm m để hàm số y=(m2)x+5:

a) Có đồ thị vuông góc với đường thẳng x+2y+1=0

b) Có đồ thị cắt đường thẳng y=x+3 tại điểm có tung độ bằng 2.

c) Đồng biến trên R với m nguyên thuộc đoạn [1;5].

d) Đồ thị hàm số cắt 2 trục Ox, Oy tại M, N sao cho tam giác OMN cân.

e) y>0x[0;2]

Đáp án

a) x+2y+1=0y=12x12

Đồ thị hàm số y=(m2)x+5 vuông góc với đường thẳng y=12x12

(m1).(12)=1m1=2m=3

b)

Thay y=2 vào phương trình đường thẳng y=x+3 ta được x=1. Đường thẳng y=(m2)x+5 cắt đường thẳng y=x+3 tại điểm có tung độ bằng 2 khi và chỉ khi A(1;2) thuộc đường thẳng y=(m2)x+5(m2)(1)+5=2m=5.

c) Hàm số đồng biến trên R khi và chỉ khi m2>0m>2.

Do m nguyên thuộc đoạn [1;5] nên m{2;3;4;5}.

d) Đồ thị cắt 2 trục tọa độ Ox, Oy lần lượt tại M, N. Nên M(52m;0);N(0;5).

Tam giác OMN cân

 OM=ON5|m2|=5|m2|=1[m2=1m2=1[m=3m=1

e) y>0x[0;2](m2)x+5>0x[0;2](1)

TH1: m20m2

(m2)x+50+5=5>0x[0;2]

TH2: m2<0m<2

(1)x<5m2x[0;2]2<5m22m+1m2<012<m<2

Vậy m>12 thì y>0

Bài 5. Cho của hàm số y=x2+2x2 có đồ thị là một parabol (P) .

a) Lập bảng biến thiên và vẽ đồ thị của hàm số trên.

b) Tìm giao điểm của (P) và đường thẳng d: y=x+4.

c) Tìm m để đường thẳng y=m2 cắt đồ thị tại 2 điểm phân biệt có hoành độ âm.

Giải:

a) (P) có đỉnh I(1;3), trục đối xứngx=1.

Do a=1>0 nên hàm số đồng biến trên (1;+) và nghịch biến trên (;1).

Bảng biến thiên:

 

Đồ thị hàm số đi qua điểm A(1;1);B(0;2);C(2;6).

 

b) Hoành độ giao điểm của (P) và đường thẳng y=x+3 là nghiệm của phương trình x2+2x2=x+4

x2+x6=0[x=3x=2

Giao điểm của (P) và đường thẳng y=x+3 là M(3;1);C(2;6).

c) Đường thẳng y=m2 là đường thẳng song song hoặc trùng với trục Ox.

 

Từ đồ thị ta thấy (P) giao với đường thẳng này tại 2 điểm có hoành độ âm khi và chỉ khi 2 điểm đó nằm bên trái trục Oy. Hay 3<m2<26<m<4.

Bài 6

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=x26x+5(P).

b) Từ đồ thị (P) suy ra đồ thị (P1),(P2):

(P1):y=|x26x+5|

(P2):y=x26|x|+5

c) Từ đồ thị biện luận theo m số nghiệm của phương trình:

          1)|x26x+5|=m+1           2) x26|x|+5=m1

d) Tìm m để phương trình x26x+m2=0 có 2 nghiệm phân biệt x1,x2 thỏa mãn 1<x1<x2<5

Giải

a) Đồ thị hàm số y=x26x+5 có đỉnh I(3;4), nhận trục x=3 làm trục đối xứng và đi qua các điểm A(0;5);B(5;0);C(1;0).

 

b) Từ đồ thị (P) ta lấy đối xứng qua trục hoành rồi bỏ đi phần đồ thị có tung độ âm thì ta được đồ thị (P1).

 

Từ đồ thị (P) ta bỏ đi phần đồ thị có hoành độ âm rồi lấy đối xứng qua trục tung ta được đồ thị của (P2).

 

 

c)

          1) Hoành độ giao điểm của (P1) và đường thẳng y=m+1 là nghiệm của phương trình |x26x+5|=m+1 nên số nghiệm của phương trình |x26x+5|=m+1  bằng số giao điểm của đường thẳng y=m+1 và (P1).

          2) Hoành độ giao điểm của (P2) và đường thẳng y=m1 là nghiệm của phương trình x26|x|+5=m1 nên số nghiệm của phương trình x26|x|+5=m1  bằng số giao điểm của đường thẳng y=m1 và (P2)

d) Ta có x26x+m2=0x26x+5=7m.

Nghiệm của phương trình là hoành độ giao điểm của đồ thị (P) và đường thẳng y=7m. Ta có:

Với x=1y=0

Với x=5y=0

Từ đồ thị ta có đường thẳng y=7m cắt (P) tại 2 điểm có hoành độ thỏa mãn  1<x1<x2<5 khi và chỉ khi