Draft TS. Nguy¹n V«n Lñi (chõ bi¶n) − Ngæ Thà Nh¢ 108 B€I TON CHÅN LÅC LÎP 6 Sigma - MATHS 1 MÖC LÖC Sigma - MATHS Möc löc 1 Sè tü nhi¶n 3 2 Sè nguy¶n 8 3 Ph¥n sè 10 4 H¼nh håc 14 5 Líi gi£i mët sè b i to¡n chån låc 19 2 Sigma - MATHS 1 Sè tü nhi¶n 1. Cho tªp hñp D = {0; 1; 2; 3; · · · ; 20} a) Vi¸t tªp hñp D b¬ng c¡ch ch¿ ra t½nh ch§t °c tr÷ng cho c¡c ph¦n tû cõa nâ. b) Tªp hñp D câ bao nhi¶u ph¦n tû? c) Vi¸t tªp hñp E c¡c ph¦n tû l  sè ch®n cõa D (sè ch®n l  sè chia h¸t cho 2). Tªp hñp E câ bao nhi¶u ph¦n tû? d) Vi¸t tªp hñp F c¡c ph¦n tû l  sè l´ cõa D (sè l´ l  sè khæng chia h¸t cho 2). Tªp hñp F câ bao nhi¶u ph¦n tû? 2. Trong mët lîp håc, méi håc sinh ·u håc ti¸ng Anh ho°c ti¸ng Ph¡p. Câ 25 ng÷íi håc ti¸ng Anh, 27 ng÷íi håc ti¸ng Ph¡p, cán 18 ng÷íi håc c£ hai thù ti¸ng. Häi lîp håc â câ bao nhi¶u håc sinh? 3. Cho mët sè câ 3 chú sè l  abc (a, b, c kh¡c nhau v  kh¡c 0). N¸u êi ché c¡c chú sè cho nhau ta ÷ñc mët sè mîi. Häi câ t§t c£ bao nhi¶u sè câ 3 chú sè nh÷ vªy? (Kº c£ sè ban ¦u). 4. Quyºn s¡ch gi¡o khoa To¡n 6 tªp mët câ 132 trang. Hai trang ¦u khæng ¡nh sè. Häi ph£i dòng t§t c£ bao nhi¶u chú sè º ¡nh sè c¡c trang cõa quyºn s¡ch n y? 5. Vîi 9 que di¶m h¢y s­p x¸p th nh mët sè La M¢: a) Câ gi¡ trà lîn nh§t. b) Câ gi¡ trà nhä nh§t. 6. Vi¸t c¡c tªp hñp sau b¬ng c¡ch li»t k¶ c¡c ph¦n tû cõa chóng: a) Tªp hñp A c¡c sè tü nhi¶n x m  x − 2 = 14. b) Tªp hñp B c¡c sè tü nhi¶n x m  x + 5 = 5. c) Tªp hñp C c¡c sè tü nhi¶n khæng v÷ñt qu¡ 100. 7. Cho A l  tªp hñp c¡c sè tü nhi¶n chia h¸t cho 3 v  nhä hìn 30; B l  tªp hñp c¡c sè tü nhi¶n chia h¸t cho 6 v  nhä hìn 30; C l  tªp hñp c¡c sè tü nhi¶n chia h¸t cho 9 v  nhä hìn 30. a) Vi¸t c¡c tªp hñp A, B, C b¬ng c¡ch li»t k¶ c¡c ph¦n tû cõa c¡c tªp hñp â. b) X¡c ành sè ph¦n tû cõa méi tªp hñp. c) Dòng k½ hi»u ⊂ º thº hi»n quan h» giúa c¡c tªp hñp â. 3 Sigma - MATHS 8. T¼m hai sè bi¸t têng cõa chóng l  176; méi sè ·u câ hai chú sè kh¡c nhau v  sè n y l  sè kia vi¸t theo thù tü ng÷ñc l¤i. 9. Khæng t½nh gi¡ trà cö thº, h¢y so s¡nh hai biºu thùc: a) A = 199 · 201 v  B = 200 · 200. b) C = 35 · 53 − 18 v  D = 35 + 53 · 34. 10. T¼m x bi¸t: a) (x + 74) − 318 = 200 b) 3636 : (12x − 91) = 36 c) (x : 23 + 45) · 67 = 8911. 11. Cho S = 7 + 10 + 13 + · · · + 97 + 100. a) Têng tr¶n câ bao nhi¶u sè h¤ng? b) T¼m sè h¤ng thù 22. c) T½nh S. 12. Vi¸t c¡c t½ch ho°c th÷ìng sau d÷îi d¤ng lôy thøa cõa mët sè. a) 2 5 · 8 4 ; b) 256 · 1253 ; c) 6255 : 257 d) 123 · 3 3 . 13. T¼m x ∈ N bi¸t: a) x 10 = 1x ; b) x 10 = x ; c) (2x − 15)5 = (2x − 15)3 d) 2 x − 15 = 17 ; e) (7x − 11)3 = 25 · 5 2 + 200. 14. T½ch c¡c sè l´ li¶n ti¸p câ tªn còng l  7. Häi t½ch â câ bao nhi¶u thøa sè? 15. Cho S = 1 + 31 + 32 + 33 + · · · + 330 . T¼m chú sè tªn còng cõa S, tø â suy ra S khæng ph£i l  sè ch½nh ph÷ìng. 16. T½nh gi¡ trà biºu thùc: a) (102 + 112 + 122 ) : (132 + 142 ) b) 9! − 8! − 7! · 8 2 c) (3 · 4 · 2 16) 2 11 · 2 13 · 4 11 − 169 . 17. T¼m x bi¸t: a) (19x + 2 · 5 2 ) : 14 = (13 − 8)2 − 4 2 4 Sigma - MATHS b) 2 · 3 x = 10 · 3 12 + 8 · 274 . 18. Mët thòng câ 16 l½t. H¢y dòng mët b¼nh 7 l½t v  mët b¼nh 3 l½t º chia 16 l½t th nh hai ph¦n b¬ng nhau. 19. Trong c¡c sè sau, sè n o chia h¸t cho 2; cho 4; cho 8; cho 5; cho 25; cho 125? 1010; 1076; 1984; 2782; 3452; 5341; 6375; 7800. 20. Vîi còng c£ 4 chú sè 2; 5; 6; 7, vi¸t t§t c£ c¡c sè: a) Chia h¸t cho 4; b) Chia h¸t cho 8; c) Chia h¸t cho 25; d) Chia h¸t cho 125. 21. Câ bao nhi¶u sè tü nhi¶n câ ba chú sè v  chia h¸t cho 3? 22. Bi¸t r¬ng A = 717 + 17 · 3 − 1 l  mët sè chia h¸t cho 9. Câ thº sû döng k¸t qu£ n y º chùng tä r¬ng B = 718 + 18 · 3 − 1 công chia h¸t cho 9 khæng? Chó þ: Ta câ thº chùng minh k¸t qu£ têng qu¡t hìn: Vîi måi sè tü nhi¶n n, n¸u 7 n + 3n − 1 chia h¸t cho 9 th¼ 7 n+1 + 3(n + 1) − 1 công chia h¸t cho 9. (Lo¤i b i tªp n y chu©n bà cho håc sinh l m quen vîi ph÷ìng ph¡p quy n¤p to¡n håc). 23. a) Cho n l  mët sè khæng chia h¸t cho 3. Chùng minh r¬ng n 2 chia cho 3 d÷ 1. b) Cho p l  mët sè nguy¶n tè lîn hìn 3. Häi p 2+2003 l  sè nguy¶n tè hay hñp sè? 24. Méi sè sau câ bao nhi¶u ÷îc: 90; 540; 3675. 25. i·n v o b£ng sau måi sè nguy¶n tè p m  p 2 ≤ a : a 59 121 179 197 217 p 5 Sigma - MATHS 26. Hai sè nguy¶n tè sinh æi l  hai sè nguy¶n tè hìn k²m nhau 2 ìn và. T¼m hai sè nguy¶n tè sinh æi nhä hìn 50. 27. Mët c«n pháng h¼nh chú nhªt k½ch th÷îc 630 × 480 (cm) ÷ñc l¡t lo¤i g¤ch h¼nh vuæng. Muèn cho hai h ng g¤ch cuèi còng s¡t hai bùc t÷íng li¶n ti¸p khæng bà c­t x²n th¼ k½ch th÷îc lîn nh§t cõa vi¶n g¤ch l  bao nhi¶u? º l¡t c«n pháng â c¦n bao nhi¶u g¤ch? 28. Câ 64 ng÷íi i tham quan b¬ng hai lo¤i xe: Lo¤i 12 ché ngçi v  lo¤i 7 ché ngçi. Bi¸t sè ng÷íi i vøa õ sè gh¸ ngçi, häi méi lo¤i câ m§y xe? 29. T¼m hai sè tü nhi¶n a v  b bi¸t t½ch cõa chóng l  2940 v  BCNN cõa chóng l  210. 30. Ba håc sinh, méi ng÷íi mua mët lo¤i bót. Gi¡ ba lo¤i l¦n l÷ñt l  1200 çng, 1500 çng, 2000 çng. Bi¸t sè ti·n ph£i tr£ l  nh÷ nhau, häi méi håc sinh mua ½t nh§t bao nhi¶u bót? 31. Mët m£nh §t h¼nh chú nhªt d i 112m, rëng 40m. Ng÷íi ta muèn chia m£nh §t th nh nhúng æ vuæng b¬ng nhau º trçng c¡c lo¤i rau. Häi vîi c¡ch chia n o th¼ c¤nh cõa æ vuæng l  lîn nh§t v  b¬ng bao nhi¶u? 32. Trong mët buêi li¶n hoan, Ban tê chùc ¢ mua t§t c£ 840 c¡i b¡nh, 2352 c¡i kµo v  560 qu£ quþt chia ·u ra c¡c ¾a, ¾a gçm c£ b¡nh, kµo v  quþt. T½nh sè ¾a nhi·u nh§t ph£i câ méi ¾a bao nhi¶u b¡nh, kµo, quþt? 33. Sè håc sinh cõa mët tr÷íng l  mët sè lîn hìn 900, gçm ba chú sè. Méi l¦n x¸p h ng 3, h ng 4, h ng 5 ·u vøa õ, khæng thøa ai. Häi tr÷íng â câ bao nhi¶u håc sinh? 34. Ng÷íi ta ¸m trùng trong mët rê. N¸u ¸m theo tøng chöc công nh÷ ¸m theo t¡ (mët t¡ câ 12 qu£), ho°c ¸m theo tøng 15 qu£ th¼ l¦n n o công cán l¤i 1 qu£. T½nh sè trùng trong rê, bi¸t r¬ng sè trùng ch÷a ¸n 100. 35. T½nh têng: a) 23476893 + 542771678 ; b) 32456 + 97685 + 238947 6 Sigma - MATHS 36. T½nh nhanh c¡c têng sau: a) 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 ; b) 2 + 4 + 6 + 8 + 10 + · · · + 100. 37. T¼m x, bi¸t : a) (x − 78) · 26 = 0 ; b) 39 · (x − 5) = 39 38. T½nh nhanh: 1 · 5 · 6 + 2 · 10 · 12 + 4 · 20 · 24 + 9 · 45 · 54 1 · 3 · 5 + 2 · 6 · 10 + 4 · 12 · 20 + 9 · 27 · 45 39. Chùng tä r¬ng hai sè n+ 1 v  3n+ 4(n ∈ N) l  hai sè nguy¶n tè còng nhau. 40. T¼m sè tü nhi¶n a, bi¸t r¬ng 156 chia cho a d÷ 12, v  280 chia cho a d÷ 10. 41. T¼m hai sè tü nhi¶n a v  b (a > b) câ BCNN b¬ng 336 v  ×CLN b¬ng 12. 42. Câ 133 quyºn vð, 80 bót bi, 170 tªp gi§y. Ng÷íi ta chia vð, bót bi, gi§y th nh c¡c ph¦n th÷ðng ·u nhau, méi ph¦n th÷ðng gçm c£ ba lo¤i. Nh÷ng sau khi chia cán thøa 13 quyºn vð, 8 bót bi, 2 tªp gi§y khæng õ chia v o c¡c ph¦n th÷ðng. T½nh xem câ bao nhi¶u ph¦n th÷ðng? 43. Qu¢ng ÷íng AB d i 110km. Lóc 7 gií, ng÷íi thù nh§t i tø A º ¸n B, ng÷íi thù hai i tø B º ¸n A. Hå g°p nhau lóc 9 gií. Bi¸t vªn tèc ng÷íi thù nh§t lîn hìn vªn tèc ng÷íi thù hai l  5km/h. T½nh vªn tèc méi ng÷íi. 44. Mët con châ uêi mët con thä c¡ch nâ 150dm. Mët b÷îc nh£y cõa châ d i 9dm, mët b÷îc cõa thä d i 7dm v  khi châ nh£y mët b÷îc th¼ thä công nh£y mët b÷îc. Häi châ ph£i nh£y bao nhi¶u b÷îc mîi uêi kàp thä? 45. Mët b  mang mët rê trùng ra chñ. Dåc ÷íng g°p mët b  kh¡c væ þ öng ph£i, rê trùng rìi xuèng §t. B  kia tä þ muèn ·n l¤i sè trùng b±n häi: - B  cho bi¸t trong rê câ bao nhi¶u trùng? B  câ rê trùng tr£ líi: - Tæi ch¿ nhî r¬ng sè trùng â chia cho 2, cho 3, cho 4, cho 5, cho 6, l¦n n o công cán thøa ra mët qu£, nh÷ng chia cho 7 th¼ khæng thøa qu£ n o. €, m  sè trùng ch÷a ¸n 400 qu£. T½nh xem trong rê câ bao nhi¶u trùng? 46. T¼m ba sè tü nhi¶n a, b, c kh¡c 0 sao cho c¡c t½ch 140a, 180b, 200c b¬ng nhau v  câ gi¡ trà nhä nh§t. 7 Sigma - MATHS 2 Sè nguy¶n 47. Tr¶n tröc sè, iºm A c¡ch gèc 2 ìn và v· b¶n tr¡i; iºm B c¡ch iºm A l  3 ìn và. Häi: a) iºm A biºu di¹n sè nguy¶n n o? b) iºm B biºu di¹n sè nguy¶n n o? 48. T¼m c¡c gi¡ trà th½ch hñp cõa a v  b: a) a00 > −111 b) −a99 > −600 c) −cb3 < −cba d) −cab < −c85 49. Trong c¡c m»nh · sau, m»nh · n o óng, m»nh · n o sai? a) N¸u a = b th¼ |a| = |b| b) N¸u |a| = |b| th¼ a = b c) N¸u |a| < |b| th¼ a < b. 50. T¼m x bi¸t: a) |x| + | − 5| = | − 37| b) | − 6| · |x| = |54| 51. T¼m x ∈ Z bi¸t: a) |x| < 10 b) |x| > 21 c) |x| > −3 d) |x| < −1. 52. T¼m c¡c v½ dö chùng tä r¬ng c¡c kh¯ng ành sau khæng óng: a) Vîi måi a ∈ Z ⇒ a ∈ N; b) Vîi måi a ∈ Z ⇒ |a| > 0 ; c) Vîi måi a ∈ Z ⇒ |a| > a ; d) Vîi måi a, b ∈ Z v  |a| = |b| ⇒ a = b ; e) Vîi måi a, b ∈ Z v  |a| > |b| ⇒ a > b. 53. Chùng minh r¬ng vîi måi sè nguy¶n a ta luæn câ: a) |a| ≥ 0 : Gi¡ trà tuy»t èi cõa mët sè nguy¶n th¼ khæng ¥m. b) |a| ≥ a : Gi¡ trà tuy»t èi cõa mët sè nguy¶n luæn luæn lîn hìn ho°c b¬ng ch½nh nâ. 54. Cho |x| = 5; |y| = 11. T½nh x + y. 55. T½nh têng: 8 Sigma - MATHS a) S1 = a + |a| vîi a ∈ Z; b) S2 = a + |a| + a + |a| + · · · + a vîi a l  sè nguy¶n ¥m v  têng câ 101 sè h¤ng. 56. T½nh nhanh: a) −37 + 54 + (−70) + (−163) + 246 ; b) −359 + 181 + (−123) + 350 + (−172) ; c) −69 + 53 + 46 + (−94) + (−14) + 78. 57. Cho 18 sè nguy¶n sao cho têng cõa 6 sè b§t k¼ trong c¡c sè â ·u l  mët sè ¥m. Gi£i th½ch v¼ sao têng cõa 18 sè â công l  mët sè ¥m? B i to¡n cán óng khæng n¸u thay 18 sè bði 19 sè? 58. T¼m sè nguy¶n x, bi¸t: a) x + 15 = 7 b) x − 5 = −8 c) 12 + (4 − x) = −5 d) |x| − 6 = 5 ; e) |x − 3| = 4 59. T¼m c¡c sè nguy¶n x sao cho: a) |x| = x ; b) |x| > x ; c) |x| + x = 0 ; d) x + 5 = |x| − 5. 60. Cho d¢y sè 1; −2; 3; −4; 5; −6; 7; −8; 9; −10. Chån ra ba sè rçi °t d§u "+" ho°c d§u "-" giúa c¡c sè §y. T½nh gi¡ trà lîn nh§t, gi¡ trà nhä nh§t ¤t ÷ñc biºu thùc mîi lªp. 61. T½nh b¬ng c¡ch hñp l½ nh§t: a) −2003 + (−21 + 75 + 2003) b) 1152 − (374 + 1152) + (−65 + 374). 62. T¼m x bi¸t: a) 461 + (x − 45) = 387 b) 11 − (−53 + x) = 97 c) −(x + 84) + 213 = −16. 63. Vi¸t 5 sè nguy¶n v o 5 ¿nh cõa mët ngæi sao n«m c¡nh sao cho têng cõa hai sè t¤i hai ¿nh li·n nhau luæn b¬ng -6. T¼m 5 sè nguy¶n â. 64. T¼m x bi¸t: 9 Sigma - MATHS a) −12(x − 5) + 7(3 − x) = 5 b) 30(x + 2) − 6(x − 5) − 24x = 100. c) x(x + 3) = 0 d) (x − 2)(5 − x) = 0 e) (x − 1)(x 2 + 1) = 0 f) (x + 3)(x − 4) = 0 65. T¼m x ∈ Z bi¸t: a) |2x − 5| = 13 b) |7x + 3| = 66 c) |5x − 2| ≤ 13 d) (x + 1) + (x + 3) + (x + 5) + · · · + (x + 99) = 0 e) (x − 3) + (x − 2) + (x − 1) + · · · + 10 + 11 = 11 (sè h¤ng ¦u ti¶n ÷ñc vi¸t l  x − 3 v  k¸t thóc d¢y l  sè 11). 66. Thüc hi»n ph²p t½nh mët c¡ch hñp l½: a) (−125) · (+25) · (−32) · (−14) ; b) (−159)(+56) + (+43) · (−159) + (−159) ; c) (−31) · (+52) + (−26) · (−162). 67. Cho S = 1 − 3 + 32 − 3 3 + · · · + 398 − 3 99 . a) Chùng minh r¬ng S l  bëi cõa -20. b) T½nh S, tø â suy ra 3 100 chia cho 4 d÷ 1. 68. T¼m sè nguy¶n d÷ìng n sao cho n + 2 l  ÷îc cõa 111 cán n - 2 l  bëi cõa 11. 3 Ph¥n sè 69. Trong ng y hëi to¡n, ëi to¡n cõa mët khèi ÷ñc chia th nh bèn tèp. N¸u l§y 3 5 sè håc sinh cõa tèp thù nh§t chia ·u cho ba tèp kia th¼ sè håc sinh bèn tèp b¬ng nhau. N¸u tèp thù nh§t bît i 6 håc sinh th¼ lóc â sè håc sinh cõa tèp thù nh§t b¬ng têng sè håc sinh ba tèp kia. Häi méi tèp câ bao nhi¶u håc sinh? 10 Sigma - MATHS 70. Chùng minh r¬ng: a) 1 · 3 · 5 · · · 39 21 · 22 · 23 · · · 40 = 1 2 20 b) 1 · 3 · 5 · · ·(2n − 1) (n + 1)(n + 2)(n + 3)· · · 2n = 1 2 n vîi n ∈ N∗ 71. T¼m c¡c gi¡ trà cõa x, sao cho: −11 12 < x 12 < −3 4 . 72. Quy çng m¨u rçi so s¡nh c¡c ph¥n sè sau: a) −8 31 v  −789 3131 ; b) 11 2 2 .3 4 .5 2 v  29 2 2 .3 4 .5 3 ; c) 1 n v  1 n + 1 (n ∈ N∗ ) 73. Chùng minh r¬ng c¡c têng sau lîn hìn 1. a) M = 3 8 + 3 15 + 3 7 ; b) N = 19 60 + 29 100 + 39 150 + 49 300 ; c) P = 41 90 + 31 72 + 21 40 + −11 45 + −1 36 74. T¼m x ∈ Z bi¸t: 1 + −1 60 + 19 120 < x 36 + −1 60 < 58 90 + 59 72 + −1 60 . 75. T½nh b¬ng ph÷ìng ph¡p hñp lþ nh§t: a) 31 23 − ( 7 32 + 8 23 ); b) ( 1 3 + 12 67 + 13 41 ) − ( 79 67 − 28 41 ); c) 38 45 − ( 8 45 − 17 51 − 3 11 ) 76. T½nh c¡c têng sau b¬ng ph÷ìng ph¡p hñp lþ nh§t: a) A = 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 49.50 b) B = 2 3.5 + 2 5.7 + 2 7.9 + ... + 2 37.39 c) C = 3 4.7 + 3 7.10 + 3 10.13 + ... + 3 73.76 11 Sigma - MATHS 77. T½nh b¬ng c¡ch hñp lþ: a) 17 5 . −31 125 . 1 2 . 10 17 . 1 2 3 ; b) 11 4 . −5 9 − 4 9 . 11 4  . 8 33 ; c) 17 28 + 18 29 − 19 30 − 20 31  . −5 12 + 1 4 + 1 6  . 78. T½nh nhanh: 24.47 − 23 24 + 47.23 . 3 + 3 7 − 3 10 + 3 1001 − 3 13 9 1001 − 9 13 + 9 7 − 9 10 + 9 . 79. T¼m x: a) 1 3 + 2 3 x = 1 4 ; b) 3 4 + 1 4 : x = −1; c) 1 −  5 3 8 + x − 7 5 24  : 16 2 3 = 0; d) 2 2 + 2 6 + 2 12 + ... + 2 x(x + 1) = 1 1989 1991 . 80. Mët ca næ xuæi dáng sæng tø A ¸n B trong 3 gií rçi i ng÷ñc dáng trð v· A m§t 4 1 2 gií. N¸u mët b± nùa træi tü do xuæi dáng th¼ m§t bao nhi¶u thíi gian º træi tø A ¸n B? 81. T¼m x trong c¡c hén sè: a) 2 x 7 = 75 35 ; b) 4 3 x = 47 x ; c) x x 15 = 112 5 . 12 Sigma - MATHS 82. T½nh: a)  2 5 6 + 4 9  :  10 1 12 − 9 1 2  ; b) 1 5 18 − 5 18  1 15 + 1 1 12  ; c) − 1 7 .  9 1 2 − 8, 75 : 2 7 + 0, 625 : 1 2 3 83. T¼m x bi¸t: a) 7, 5x :  9 − 6 13 21  = 2 13 25 b) (1, 16 − x).5, 25  10 5 9 − 7 1 4  .2 2 17 = 75% 84. Trong khèi håc sinh lîp 9 cõa mët tr÷íng trung håc cì sð câ 60% sè håc sinh th½ch bâng ¡, 2 3 sè håc sinh th½ch bâng b n, 40% sè håc sinh th½ch bâng truy·n v  4 15 sè håc sinh th½ch ¡ c¦u. H¢y t¼m sè håc sinh cõa méi nhâm còng th½ch mët mæn thº thao, bi¸t sè håc sinh cõa khèi 9 l  225. 85. N«m nay con 12 tuêi, bè 42 tuêi. T½nh t¿ sè giúa tuêi con v  tuêi bè ð nhúng thíi iºm hi»n nay; tr÷îc ¥y 7 n«m; sau ¥y 28 n«m. 86. Ba ng÷íi chung nhau mua h¸t mët rê trùng. Ng÷íi thù nh§t mua 1 2 sè trùng m  hai ng÷íi kia mua. Sè trùng ng÷íi thù hai mua b¬ng 3 5 sè trùng ng÷íi thù nh§t mua. Ng÷íi thù ba mua 14 qu£. T½nh sè trùng lóc ¦u trong rê. 13 Sigma - MATHS 4 H¼nh håc 87. 1) Trong h¼nh d÷îi câ hai ÷íng th¯ng m v  n v  ba iºm ch÷a °t t¶n. H¢y i·n c¡c chú A, B, C v o óng và tr½ cõa nâ bi¸t: a) iºm A khæng thuëc ÷íng th¯ng m v  công khæng thuëc ÷íng th¯ng n; b) iºm B khæng thuëc ÷íng th¯ng m; c) iºm C khæng thuëc ÷íng th¯ng n. 2) V³ ÷íng th¯ng p v  c¡c iºm A, B n¬m tr¶n p. a) N¶u c¡ch v³ iºm C th¯ng h ng vîi hai iºm A, B; b) N¶u c¡ch v³ iºm D khæng th¯ng h ng vîi 2 iºm A, B. 88. Cho tr÷îc mët sè iºm trong â khæng câ 3 iºm n o th¯ng h ng. V³ c¡c ÷íng th¯ng i qua c¡c c°p iºm. Bi¸t têng sè ÷íng th¯ng v³ ÷ñc 28. Häi câ bao nhi¶u iºm cho tr÷îc? 89. V³ iºm D v  E sao cho D n¬m giúa C v  E cán E n¬m giúa D v  F. a) V¼ sao câ thº kh¯ng ành 4 iºm C, D, E, F th¯ng h ng b) Kº t¶n hai tia tròng nhau gèc E. c) V¼ sao câ thº kh¯ng ành iºm E n¬m giúa C v  F. 14 Sigma - MATHS 90. V³ l¤i h¼nh d÷îi rçi tr£ líi c¡c c¥u häi sau: a) H¼nh câ m§y tia? Câ m§y o¤n th¯ng? b) Nhúng c°p o¤n th¯ng n o khæng c­t nhau? c) Hai o¤n th¯ng n o c­t nhau t¤i iºm n¬m giúa hai ¦u cõa méi o¤n th¯ng? 91. Tr¶n ÷íng th¯ng xy l§y mët iºm O v  hai iºm M, N sao cho OM = 2cm; ON = 3cm. V³ c¡c iºm A v  B tr¶n ÷íng th¯ng xy sao cho M l  trung iºm cõa OA; N l  trung iºm cõa OB. T½nh ë d i AB. 92. Gåi O l  mët iºm cõa o¤n th¯ng AB = 4cm. X¡c ành và tr½ cõa iºm O º : a) Têng AB + BO ¤t gi¡ trà nhä nh§t; b) Têng AB + BO = 2BO; c) Têng AB + BO = 3BO. 93. Cho ÷íng th¯ng m v  n«m iºm A,B,C,D,E khæng thuëc m. a) Chùng tä r¬ng trong hai nûa m­t ph¯ng èi nhau bð l  ÷íng th¯ng m, câ mët m°t ph¯ng chùa ½t nh§t 3 iºm. b) Cù qua hai iºm v³ mët o¤n th¯ng. Häi nhi·u nh§t câ m§y o¤n th¯ng c­t m? 94. V³ gâc xOy kh¡c gâc bµt. L§y A tr¶n tia Ox, l§y B tr¶n tia Oy (A v  B kh¡c O). H¢y l§y mët iºm C sao cho gâc BOC \ k· bò vîi gâc BOA \. a) Trong ba iºm A,O,C iºm n o n¬m giúa hai iºm cán l¤i? b) V³ c¡c tia BA,BC häi iºm O n¬m trong gâc n o? c) Kº t¶n c¡c c°p gâc k· bò ¿nh B. 15 Sigma - MATHS 95. Cho gâc bµt xOy d . V³ hai tia Om, On tr¶n còng mët nûa m°t ph¯ng bí xy sao cho xOm \= 1200 ; xOn d = a 0 . T¼m gi¡ trà cõa a º tia Om n¬m giúa hai tia Oy, On. 96. Tr¶n m°t ph¯ng, cho tia Ox. V³ hai tia Oy, Ot sao cho xOy d = 1000 ; xOt d = 1500 . T½nh sè o gâc yOt d. 97. Tr¶n nûa m°t ph¯ng bí chùa tia Ox v³ ba tia Oy, Oz, Ot sao cho xOy d = 500 ; xOz d = 750 ; xOt d = 1000 . X¡c ành xem tia n o l  tia ph¥n gi¡c cõa mët gâc. 98. Cho ba tia OA, OB, OC t¤o th nh ba gâc b¬ng nhau v  khæng câ iºm trong chung DOB \; BOC \ v  COA \. V¼ sao câ thº kh¯ng ành tia èi cõa méi tia nâi tr¶n l  tia ph¥n gi¡c cõa gâc t¤o bði hai tia cán l¤i? 99. Tr¶n ÷íng th¯ng xy l§y iºm O. V³ ÷íng trán (O; 3) c­t Ox, Oy thù tü t¤i A v  B. V³ ÷íng trán (O; 2) c­t tia Ox, Oy thù tü t¤i C v  D. V³ ÷íng trong (D; BD) c­t BO t¤i M v  c­t ÷íng trán (O; 2) t¤i N. a) So s¡nh AC v  BD. b) Chùng tä M l  trung iºm cõa OD c) So s¡nh têng ON + ND vîi OB. 100. a) V³ 4ABC bi¸t BC = 3,5cm; AB = 2cm; AC = 3cm. b) V³ ti¸p 4ADE bi¸t D thuëc tia èi cõa tia AB v  AD = 1cm; E thuëc tia èi tia AC v  AE = 1,5cm. c) Hai tia BE v  CD c­t nhau t¤i O. Dòng compa º kiºm tra xem E v  D theo thù tü câ ph£i l  trung iºm cõa OB v  OC khæng? 101. Mët m£nh gi§y h¼nh chú nhªt bà gªp l¤i theo h¼nh d÷îi ¥y. T½nh gâc a. 16 Sigma - MATHS 102. ABCD l  mët h¼nh vuæng. 4DP C l  mët tam gi¡c ·u. AB = DP v  CD = CP. T¼m gâc ADP \. 103. Trong h¼nh v³, BE = AC, CAE \= 300 v  AEB \= 700 . T¼m gâc ABC \ 104. Trong biºu ç d÷îi ¥y, AB = AC = AD. Gâc ABC = 400 v  gâc ACD = 800 . T½nh gâc BAD. 105. ABCD l  mët h¼nh vuæng v  tam gi¡c BCE l  tam gi¡c ·u. T½nh gâc AED. 106. T½nh gâc: ba + bb + cb+ bd + eb+ bf 17 Sigma - MATHS 107. Trong tam gi¡c ABC, AB = AC, AD = AE v  BAD \ = 600 . T½nh gâc CDE. 108. Trong tam gi¡c ABC, gâc ABC b¬ng 800 , AD = AE v  CD = CF. T½nh gâc EDF. 18 Sigma - MATHS 5 Líi gi£i mët sè b i to¡n chån låc B i 11: Cho S = 7 + 10 + 13 + · · · + 97 + 100. a) Têng tr¶n câ bao nhi¶u sè h¤ng? b) T¼m sè h¤ng thù 22. c) T½nh S. B i gi£i: a) Sè sè h¤ng cõa têng l  : 100 − 7 3 + 1 = 32 (sè h¤ng). b) Gåi sè h¤ng thù 22 l  x, ta câ: x − 7 3 + 1 = 22 ⇒ x = 70. c) S = 7 + 10 + 13 + · · · + 97 + 100 hay S = 100 + 97 + 94 + · · · + 10 + 7 (giao ho¡n) ⇔ 2S = (7 + 100) + (10 + 97) + · · · + (100 + 7) (vîi 32 nhâm.) ⇔ 2S = (7 + 100) · 32 ⇔ S = (7 + 100) · 32 2 = 1712. B i 22: Bi¸t r¬ng A = 717 + 17 · 3 − 1 l  mët sè chia h¸t cho 9. Câ thº sû döng k¸t qu£ n y º chùng tä r¬ng B = 718 + 18 · 3 − 1 công chia h¸t cho 9 khæng? B i gi£i: Theo ¦u b i A = 717 + 17 · 3 − 1 l  mët sè tü nhi¶n chia h¸t cho 9 tùc l  ta câ (717 + 50) | 9. Ta vi¸t sè B nh÷ sau: B = 718 + 18 · 3 − 1 = 718 + 53 = 7(717 + 50) − 297 = 7 · (717 + 50) − 33 · 9. V¼ (717 + 50) | 9 v  (33 · 9) | 9 n¶n B | 9. Chó þ: Ta câ thº chùng minh k¸t qu£ têng qu¡t hìn: Vîi måi sè tü nhi¶n n, n¸u 7 n + 3n − 1 chia h¸t cho 9 th¼ 7 n+1 + 3(n + 1) − 1 công chia h¸t cho 9. (Lo¤i b i tªp n y chu©n bà cho håc sinh l m quen vîi ph÷ìng ph¡p quy n¤p to¡n håc). B i 32: Trong mët buêi li¶n hoan, Ban tê chùc ¢ mua t§t c£ 840 c¡i b¡nh, 2352 c¡i kµo v  560 qu£ quþt chia ·u ra c¡c ¾a, ¾a gçm c£ b¡nh, kµo v  quþt. T½nh sè ¾a nhi·u nh§t ph£i câ méi ¾a bao nhi¶u b¡nh, kµo, quþt? B i gi£i: 19 Sigma - MATHS Sè ¾a nhi·u nh§t ph£i câ l  ×CLN(840, 2352, 560) = 56. Méi ¾a câ sè b¡nh l : 840 : 56 = 15 (b¡nh) Méi ¾a câ sè kµo l : 2352 : 56 = 42 (kµo) Méi ¾a câ sè quþt l : 560 : 56 = 10 (qu£) Vªy nhi·u nh§t 56 ¾a, méi ¾a câ 15 c¡i b¡nh, 42 c¡i kµo, 10 qu£ quþt. B i 42: Câ 133 quyºn vð, 80 bót bi, 170 tªp gi§y. Ng÷íi ta chia vð, bót bi, gi§y th nh c¡c ph¦n th÷ðng ·u nhau, méi ph¦n th÷ðng gçm c£ ba lo¤i. Nh÷ng sau khi chia cán thøa 13 quyºn vð, 8 bót bi, 2 tªp gi§y khæng õ chia v o c¡c ph¦n th÷ðng. T½nh xem câ bao nhi¶u ph¦n th÷ðng? B i gi£i: Sè vð ¢ chia: 133 - 13 = 120 quyºn. Sè bót ¢ chia: 80 - 8 = 72 bót. Sè tªp gi§y ¢ chia: 170 - 2 = 168 tªp gi§y. Sè ph¦n th÷ðng l  ×CLN(120, 72, 168) = 24 ph¦n th÷ðng. Vªy sè ph¦n th÷ðng l  24. B i 45: Mët b  mang mët rê trùng ra chñ. Dåc ÷íng g°p mët b  kh¡c væ þ öng ph£i, rê trùng rìi xuèng §t. B  kia tä þ muèn · l¤i sè trùng b±n häi: - B  cho bi¸t trong rê câ bao nhi¶u trùng? B  câ rê trùng tr£ líi: - Tæi ch¿ nhî r¬ng sè trùng â chia cho 2, cho 3, cho 4, cho 5, cho 6, l¦n n o công cán thøa ra mët qu£, nh÷ng chia cho 7 th¼ khæng thøa qu£ n o. €, m  sè trùng ch÷a ¸n 400 qu£. T½nh xem trong rê câ bao nhi¶u trùng? B i gi£i: Gåi sè trùng l  a. Ta câ a − 1 l  bëi chung cõa 2, 3, 4, 5, 6 v  a − 1 < 399. Tø â ta ÷ñc: a − 1 ∈ {60; 120; 180; 240; 300; 360} a ∈ {61; 121; 181; 241; 301; 361} Do a | 7 n¶n a = 301. Rê trùng câ 301 qu£. B i 49: Trong c¡c m»nh · sau, m»nh · n o óng, m»nh · n o sai? a) N¸u a = b th¼ |a| = |b| b) N¸u |a| = |b| th¼ a = b 20 Sigma - MATHS c) N¸u |a| < |b| th¼ a < b. B i gi£i: a) óng b) Sai (v½ dö: a = 3, b = -3) ; c) Sai (v½ dö: a = -3, b = -4) B i 65: T¼m x ∈ Z bi¸t: a) |2x − 5| = 13 b) |7x + 3| = 66 c) |5x − 2| ≤ 13 d) (x + 1) + (x + 3) + (x + 5) + · · · + (x + 99) = 0 e) (x − 3) + (x − 2) + (x − 1) + · · · + 10 + 11 = 11 B i gi£i: a) |2x − 5| = 13. X²t 2 tr÷íng hñp: 2x − 5 = 13; 2x − 5 = −13. Vªy x = 9; x = -4. b) |7x + 3| = 66 suy ra x = 9. c) |5x − 2| ≤ 13 n¶n −13 ≤ 5x − 2 ≤ 13 −11 ≤ 5x ≤ 15 −2 ≤ x ≤ 3 ⇔ x ∈ {−2; −1; 0; 1; 2; 3} d) (x + 1) + (x + 3) + (x + 5) + · · · + (x + 99) = 0 suy ra [(x + 1) + (x + 99)] · 50 2 = (x + 50) · 50 = 0; x + 50 = 0 ⇔ x = −50. e) (x − 3) + (x − 2) + (x − 1) + · · · + 10 + 11 = 11. Bä sè h¤ng 11 ð hai v¸ ta ÷ñc: (x − 3) + (x − 2) + (x − 1) + · · · + 10 = 0 Gåi sè sè h¤ng ð v¸ tr¡i l  n(n > 0) ta câ: [(x − 3) + 10] · n 2 = 0 hay (x + 7) · n = 0. V¼ n 6= 0 n¶n x + 7 = 0, do â x = −7. B i 71: T¼m c¡c gi¡ trà cõa x, sao cho: −11 12 < x 12 < −3 4 . B i gi£i: Chån m¨u sè chung l  12 ta câ: −3 4 = −9 12 . 21 Sigma - MATHS Do â ta câ: −11 12 < x 12 < −9 12 , suy ra −11 < x < −9. Vªy x = −10. B i 80: Mët ca næ xuæi dáng sæng tø A ¸n B trong 3 gií rçi i ng÷ñc dáng trð v· A m§t 4 1 2 gií. N¸u mët b± nùa træi tü do xuæi dáng th¼ m§t bao nhi¶u thíi gian º træi tø A ¸n B? B i gi£i: Vªn tèc ca næ khi xuæi dáng: 1 3 Vªn tèc ca næ khi ng÷ñc dáng: 1 : 4 1 2 = 2 9 . Hi»u 1 3 − 2 9 = 1 9 ch½nh l  vªn tèc cõa b± n÷îc træi tü do. Vªn tèc b± n÷îc træi tü do: 1 9 : 2 = 1 18 Thíi gian º b± n÷îc træi tü do tø A ¸n B l : 1 : 1 18 = 18 (gií). B i 86: Ba ng÷íi chung nhau mua h¸t mët rê trùng. Ng÷íi thù nh§t mua 1 2 sè trùng m  hai ng÷íi kia mua. Sè trùng ng÷íi thù hai mua b¬ng 3 5 sè trùng ng÷íi thù nh§t mua. Ng÷íi thù ba mua 14 qu£. T½nh sè trùng lóc ¦u trong rê. B i gi£i: Ng÷íi thù nh§t mua 1 2 sè trùng m  hai ng÷íi kia mua. Vªy ng÷íi thù nh§t mua 1 3 ê trùng. Ng÷íi thù hai mua 1 3 · 3 5 = 1 5 (rê trùng) Ph¦n trùng ng÷íi thù ba mua: 1 − 1 3 + 1 5  = 7 15 (rê trùng) Sè trùng trong rê l  14 : 7 15 = 30 (qu£). 22 Sigma - MATHS B i 107: Trong tam gi¡c ABC, AB = AC, AD = AE v  BAD \ = 600 . T½nh gâc CDE. B i gi£i: °t DAE \= 2x ⇔ BAC \= 60 \ 0 + 2x ABC = ACB \= (1800 − 600 − 2x) : 2 = 600 − x ⇔ ADE \= AED \= (1800 − 2x) : 2 = 90 \ 0 − x CDE + DCE \ = 90 \ 0 − x DCE = 60 \ 0 − x CDE = (900 − x) − (600 − x) = 300 . B i 108: Trong tam gi¡c ABC, gâc ABC b¬ng 800 , AD = AE v  CD = CF. T½nh gâc EDF. B i gi£i: Ab + Bb + Cb = 1800 Ab = 1800 − (b1 + b1) Bb = 800 Cb = 1800 − (b2 + b2) Tø Ab + Bb + Cb = 1800 1800 − 2 × b1 + 800 − 1800 − 2 × b2 = 1800 23 Sigma - MATHS 4400 − 2 × (b1 + b2) = 1800 2600 = 2 × (b1 + b2) (b1 + b2) = 1300 EDF \+ b1 + b2 = 1800 EP F \ = 500 . Xin ch¥n th nh c£m ìn sü quan t¥m cõa b¤n åc! . . . . . . . . . . . . . . . ∗ ∗∗ . . . . . . . . . . . . . . . HT . . . . . . . . . . . . . . . ∗ ∗∗ . . . . . . . . . . . . . . . 24